JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Java Reference -
Language -
Regular Expressions

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 1 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Table Of Contents

TaADLE Of COMEENES ...ttt ettt ettt ettt a et b et s et n b esne e sesnene 2

Selected EXAMIPLESc.ovcvueueuiiiiiiirinreeteieieietcit ettt ettt bbbttt 4
IMEAECRIES ...ttt ettt sttt ettt et n et en e 4
REPIACEIMENL ...ttt ettt bbbttt bbbt senene 8

ConCePUAl OVEIVIEWccoiiiiiiiiiii bbb 9

Java Coding OPErations...........ccucucuiiiiiriiieiecccccc e 10
OVEIVIEW ...ttt ettt ettt ettt ettt b e bbbt b bbb et e bt et b et e bt e st e b et et bt et e e ebe b e e enene 10
Paradigmatic EXAMPLeccooiiiiiiiiiiiiiiiccccccc e 10
Common Single Line Methodsc.ccciiiiinniiiccccireeeeee e 11

Match — Boolean Test 11

Match — Substring Extraction 12

Replacement 12

Split 13
Other Matcher Class Methodscceiviiiiriiiieee ettt 14

REGEX SYINEAX ...t s 15
Pattern ("TeZexX") SYIEAXcoucuiiriiiiiiciiircec e 15

Single Characters 15

Character sets 15

Logical Operations 17

Quantifiers 17

Boundary Matches 18

Flags 18

Quotation 19

Captures 19
RePIACEMENE SYNEAXvviiiiiiiiireeeie ettt 20

REEEX RULES ... 21
GEINETAL ...ttt st b et b e et b e bbbt b e bbbt b e bbbt bt bt b e 21
QUANTIICTS ettt et e e et e et e e sat e e eaaeeeateeeaaeesateesaseesateeeaseesaseesaaeesnsaesasessaseasnseean 22
Boundary MatChersccoiiiiiiii s 26
FIAES ..t 27
(@15 Lo 7= a T s IR 28
CAPLUTES ...t 28

General 28

Look ahead and Look behind non-captures 30
Atomicity (*dodgy section)30

Backreferences 31

REPIACEIMENL ...ttt ettt 32
UNICOAE SUPPOTL ..o 33
RELETEIICES, WOT ...t e e et e e et eeeaae e e et e eeaaaeeeeenaaeesaeraeesesaeeesaaeeeseanaeesesaneesananeas 35

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 2 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 3 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Selected Examples

Matches

The following examples where generated using (Bentley, Tutorial AtOracle Code Examples - Regex,
2013) RegexDemo.java

Literal
// Code
final static String regex = "foo";
final static String stringToSearch = "foo";
// Output

regex: foo
stringToSearch: foo
Match (1) of text "foo" starting at index 0 and ending at 3.

Single Character (Tab)

// Code

final static String regex = "foo\t";

final static String stringToSearch = "foo bar";
// Output

regex: foo
stringToSearch: foo Dbar
Match (1) of text "foo " starting at index 0 and ending at 4.

Listed character set

// Include

regex: [fd]oo

stringToSearch: foo coo doo

Match (1) of text "foo" starting at index 0 and ending at 3.
Match (2) of text "doo" starting at index 8 and ending at 11.

// Exclude

regex: ["~fd]oo

stringToSearch: foo coo doo

Match (1) of text "coo" starting at index 4 and ending at 7.

Ranged character set

// Include

regex: [a-z]oo

stringToSearch: foo Foo

Match (1) of text "foo" starting at index 0 and ending at 3.

// Exclude
regex: ["a-z]oo

stringToSearch: foo Foo
Match (1) of text "Foo" starting at index 4 and ending at 7.

Combined character sets (subtraction)

regex: [a-zA-Z&&["cD]]oo
stringToSearch: foo Foo coo Doo

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 4 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Match (1) of text "foo" starting at index 0 and ending at 3.
Match (2) of text "Foo" starting at index 4 and ending at 7.

Character Set, predefined (digit)

// Include
final static String regex = "\\d";

regex: \d
stringToSearch: H20
Match (1) of text "2" starting at index 1 and ending at 2.

// Exclude
final static String regex = "\\D";

regex: \D

stringToSearch: H20

Match (1) of text "H" starting at index 0 and ending at 1.
Match (2) of text "O" starting at index 2 and ending at 3.

Character Set, POSIX

// Code
final static String regex = "\\p{Alnum}";

// Output

regex: \p{Alnum}

stringToSearch: H99#

Match (1) of text "H" starting at index 0 and ending at 1.
Match (2) of text "9" starting at index 1 and ending at 2.
Match (3) of text "9" starting at index 2 and ending at 3.

Character Set, java.lang.Character (Mirrored)

final static String regex = "\\p{javaMirrored}";

regex: \p{javaMirrored}

stringToSearch: LOL{ [he

Match (1) of text "{" starting at index 3 and ending at 4.
Match (2) of text "[" starting at index 5 and ending at 6.

Character Set, Unicode block.

// Code
final static String regex = "\\p{InHiragana}";

// Output

regex: \p{InHiragana}

stringToSearch: Come to Fthe partyP

Match (1) of text "Z" starting at index 8 and ending at 9.

Character Set, Unicode category constant.

// Code
final static String regex = "\\p{Sc}"; // Currency Symbol

// Output

regex: \p{Sc}

stringToSearch: Come - $Niceds+ © ,to Fthe partyp

Match (1) of text "$" starting at index 7 and ending at 8.

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 5 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Unicode, single character. Literal and hexadecimally referenced.

final static String regex = "\\u03B2";
final static String stringToSearch = "B Greek \uO3B2";

regex: \u03B2

stringToSearch: B Greek B

Match (1) of text "B" starting at index 0 and ending at 1.
Match (2) of text "B" starting at index 8 and ending at 9.
replacement: @

replacementResult: @ Greek @

Logical Operations

// Logical Or

// Listed character set example for reference.

regex: [fol|bo]o

stringToSearch: foo boo

Match (1) of text "fo" starting at index 0 and ending at 2.
Match (2) of text "bo" starting at index 4 and ending at 6.

// Logical Or example by comparison

regex: (folbo)o

stringToSearch: foo boo

Match (1) of text "foo" starting at index 0 and ending at 3.
Match (2) of text "boo" starting at index 4 and ending at 7.

Quantifiers (greedy)

// Many times or, failing that, zero

regex: a*

stringToSearch: aa

Match (1) of text "aa" starting at index 0 and ending at 2.
Match (2) of text "" starting at index 2 and ending at 2.

// Once or, failing that, zero

regex: av?

stringToSearch: aa

Match (1) of text "a" starting at index 0 and ending at 1.
Match (2) of text "a" starting at index 1 and ending at 2.
Match (3) of text "" starting at index 2 and ending at 2.

// Many times or, failing that, once

regex: a+

stringToSearch: aa

Match (1) of text "aa" starting at index 0 and ending at 2.

Boundary Matches

// Word boundary

regex: dog\b

stringToSearch: dogcat dog dog

Match (1) of text "dog" starting at index 7 and ending at 10.
Match (2) of text "dog" starting at index 11 and ending at 14.

// Not a word boundary
regex: dog\B

stringToSearch: dogcat dog dog
Match (1) of text "dog" starting at index 0 and ending at 3.

Flag setting in code.

final static String regex = "dog";
final static String stringToSearch = "Dog dog";

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 6 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

final static String replacement = "Q@";

// Bitwise "or" to set both flags.
final static int flags = Pattern.CASE INSENSITIVE | Pattern.UNICODE_ CASE;

Pattern pattern = Pattern.compile (BasicRegex.regex, flags);
Matcher matcher = pattern.matcher (stringToSearch);

while (matcher.find()) {

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/pattern.html

Flag setting in the pattern.

final static String regex = " (?iux)dog# comments";
final static String stringToSearch = "Dog dog";
final static String replacement = "@";

// Substitute the matches (java.lang.String)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n", regex,
stringToSearch, replacement, stringToSearch.replaceAll (regex, replacement));

// Output
Replace all " (?iux)dog# comments" matches of "Dog dog" with "@": @ @

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/pattern.html

Flag setting in the pattern overrides flag setting in code.

final static String regex = " (?-m)“\\w{3}+";

final static String stringToSearch = "cat pussy T \r\n"
+ "dog ratpig";

final static String replacement = "@";

final static int flags = Pattern.MULTILINE;

Pattern pattern = Pattern.compile (BasicRegex.regex, flags);

// The "turn off multiline" in the pattern overrides the Pattern.MULTILINE setting in code.

regex: (?2-m) " \w{3}+
stringToSearch: cat pussy T
dog ratpig

Match (1) of text "cat" starting at index 0 and ending at 3.

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.Java

Captures, General

regex: (\w{3}) (dog)
stringToSearch: catdogpussyratdog
Match (1) of text "catdog" starting at index 0 and ending at 6.
Capture groups: 2
Capture group (0) of text "catdog" starting at index 0 and ending at 6.
Capture group (1) of text "cat" starting at index 0 and ending at 3.
Capture group (2) of text "dog" starting at index 3 and ending at 6.
Match (2) of text "ratdog" starting at index 11 and ending at 17.
Capture groups: 2
Capture group (0) of text "ratdog" starting at index 11 and ending at 17.
Capture group (1) of text "rat" starting at index 11 and ending at 14.
Capture group (2) of text "dog" starting at index 14 and ending at 17.
replacement: $2$1
replacementResult: dogcatpussydograt

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 7 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

JavaReference-Language-RegularExpressions.docx

Captures, Look ahead and Look behind

// Look ahead positive.
regex: (apple]|cherry) (?= chocolate)

CC BY-NC-5A 4.0

stringToSearch: Today's specials are apple chocolate pie and cherry banana pie.

Match (1) of text "apple" starting at index 21 and ending at 26.

// Look ahead negative.
regex: (apple]|cherry) (?! chocolate)

stringToSearch: Today's specials are apple chocolate pie and cherry banana pie.

Match (1) of text "cherry" starting at index 45 and ending at 51.

// Look behind positive.

regex: (?<=fried) (bananas|clam)

stringToSearch: Tomorrow's special is fried bananas with baked clam.
Match (1) of text "bananas" starting at index 28 and ending at 35.

// Look behind negative

regex: (?<!fried) (bananas|clam)

stringToSearch: Tomorrow's special is fried bananas with baked clam.
Match (1) of text "clam" starting at index 47 and ending at 51.

Captures, backreference.

regex: (\w{3}) (\1)

stringToSearch: catdogcatcat

Match (1) of text "catcat" starting at index 6 and ending at 12.
Capture groups: 2

Capture group (0) of text "catcat" starting at index 6 and ending at 12.

Capture group (1) of text "cat" starting at index 6 and ending at 9.
Capture group (2) of text "cat" starting at index 9 and ending at 12.

Replacement

regex: ([crlat) (.at)

stringToSearch: catdogratbat

Match (1) of text "ratbat" starting at index 6 and ending at 12.
Capture groups: 2

Capture group (0) of text "ratbat" starting at index 6 and ending at 12.

Capture group (1) of text "rat" starting at index 6 and ending at 9.
Capture group (2) of text "bat" starting at index 9 and ending at 12.
replacement: #$2|S$1|S0#
replacementResult: catdogi#bat|rat|ratbat#

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au

Page 8 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Conceptual Overview

Regular expressions are a way to describe a set of strings. It allows you to pattern match
strings and perform replacements. The relevant parts involved in regular expression
operations are the: pattern (or "regex"); flags; string-to-search (or the "input");
match(es); capture(s); replacement string; and replacement result.

// The regular expression (or "regex" or "pattern")
"(\w{3}) (dog) # Comment"

// final static int flags = Pattern.CASE INSENSITIVE | Pattern.COMMENTS;

// String to search (or "input string")
"catdogpussyratdog"

// Matches and captures
Match (1) of text "catdog" starting at index 0 and ending at 6.
Capture groups: 2
Capture group (0) of text "catdog" starting at index 0 and ending at 6.
Capture group (1) of text "cat" starting at index 0 and ending at 3.
Capture group (2) of text "dog" starting at index 3 and ending at 6.
Match (2) of text "ratdog" starting at index 11 and ending at 17.
Capture groups: 2
Capture group (0) of text "ratdog" starting at index 11 and ending at 17.
Capture group (1) of text "rat" starting at index 11 and ending at 14.
Capture group (2) of text "dog" starting at index 14 and ending at 17.

// Replacement String
"@$2coo0ls1@"

// Replacement Result
@dogcoolcat@pussy@dogcoolrat@

The term "Regular expression" and its abbreviation "regex" are ambiguous. Sometimes
these refer to the whole string description and replacement apparatus. At other times
they refer specifically to the pattern that describes the set of strings, the small (but key)
component in the apparatus.

With the whole apparatus of regexes you generally want to do one of three things:

e Test whether a match has occurred against all or part of the string to search.

e Return all the matches and/or captures.

e Replace the captures (which might equal the matches).

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 9 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Java Coding Operations

overview

(Oracle, 2011) http.//docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Regex operations are supported primarily by java.util.regex and secondarily by
java.lang.String.

java.util.regex has three main classes of relevance: Pattern, Matcher, and

PatternSyntaxException

Follow those links to the respective SE7 documentation.

Paradigmatic Example

Paradigmatic use of the java.util.regex classes for matching, and replacement.

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.regex.PatternSyntaxException;

public class RegexDemo {
public static void start() {
BasicRegex. javaUtilRegexDemo () ;

}

private static class BasicRegex {

final static String regex = " (\\w{3}) (dog)# Comment";
final static String stringToSearch = "catdogpussyratdog";
final static String replacement = "@$2cool$1@";

final static int flags = Pattern.CASE INSENSITIVE | Pattern.COMMENTS;
final static boolean displayCaptures = true;

static String replacementResult = "";

private static void javaUtilRegexDemo () {
try {
Pattern pattern = Pattern.compile (BasicRegex.regex, flags);

Matcher matcher = pattern.matcher (stringToSearch) ;

System.out.printf ("regex: %$s%n", pattern.pattern());
System.out.printf ("stringToSearch: %s%n", stringToSearch);

int 1 = 1;
boolean found = false;

// List matches
while (matcher.find()) {
System.out.printf (
"Match (%d) of text \"%$s\" starting at index %d and ending at %d.%n", i++,
matcher.group (), matcher.start (), matcher.end()):

if (displayCaptures) {
System.out.printf ("\tCapture groups: %$d%n", matcher.groupCount()) ;

// List capture groups within each match

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 10 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/PatternSyntaxException.html

JavaReference-Language-RegularExpressions.docx

for (int j = 0; j < matcher.groupCount () + 1; j++) {
System.out.printf ("\tCapture group (%d
+ " at index %d and ending at %d.%
matcher.start (j), matcher.end(j));
} // for (int j
} // if (displayCaptures

found = true;
} // while (matcher

if (!found) {
System.out.println ("No match found.");

} else if (replacement.length() > 0) {
System.out.printf ("replacement: %$s%n", replacement);
replacementResult = matcher.replaceAll (replacement) ;

CC BY-NC-5A 4.0

) of text \"%s\" starting"
n", j, matcher.group(j),

System.out.printf ("replacementResult: $s%$n", replacementResult) ;

}

} catch (PatternSyntaxException pse) {

System.err.format ("There is a problem" + " with the regular expression!%n");
System.err.format ("The pattern in question is: %$s%n", pse.getPattern());
System.err.format ("The description is: %$s%n", pse.getDescription());

System.err.format ("The message is: %$s%n", pse.getMessage());

}
} // javaUtilRegexDemo ()

} // BasicRegex
} // RegexDemo

// Output

regex: (\w{3}) (dog)

stringToSearch: catdogpussyratdog

Match (1) of text "catdog" starting at index 0 and ending at 6.
Capture groups: 2

Capture group (0) of text "catdog" starting at index 0 and ending at 6.

Capture group (1) of text "cat" starting at index 0 and ending at 3.
Capture group (2) of text "dog" starting at index 3 and ending at 6.

Match (2) of text "ratdog" starting at index 11 and ending at 17.
Capture groups: 2

Capture group (0) of text "ratdog" starting at index 11 and ending at 17.

Capture group (1) of text "rat" starting at index 11 and ending at 14.
Capture group (2) of text "dog" starting at index 14 and ending at 17.

replacement: @$2cool$la@
replacementResult: @dogcoolcat@pussy@dogcoolratd

(Bentley, TutorialAtOracle Code Examples - Regex, 2013) RegexDemo.java

based on (Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/test_harness.html

Common Single Line Methods

java.lang.String Description java.util.regex
public boolean Tells whether or not all of this string matches the Pattern.matches(regex,
matches (String given regular expression. stringToSearch)
regex)

Tells whether or not part of this string matches the
given regular expression.

Pattern.compile(regex).
matcher(stringToSearch
).find();
Pattern.compile(regex)
.matcher(stringToSearc
h).JookingAt();

final static String regex = " (\\w{3}) (dog)";
final static String stringToSearch = "catdogpussycatdog";
final static String replacement = "$2cool$1";

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au

Page 11 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/test_harness.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#matches%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#matches%28java.lang.String%29

JavaReference-Language-RegularExpressions.docx

private static void matches () {

// Boolean match

// Does the regex match the whole stringToSearch?

System.out.printf ("\"$s\" matches the whole of

stringToSearch, stringToSearch.matches (regex)) ;

// " (\w{3}) (dog)" matches the whole of "catdogpussycatdog"?: false

// Does the regex match the whole stringToSearch?

System.out.printf ("\"%$s\" matches the whole of \"%s\"?: %s%n", regex,
stringToSearch, Pattern.matches(regex, stringToSearch));

// " (\w{3}) (dog)" matches the whole of "catdogpussycatdog"?: false

// Does the regex match part of the stringToSearch?
System.out.printf ("\"%s\" matches part of \"%$s\"?: %$s%n", regex,
Pattern.compile (regex) .matcher (stringToSearch) .find());

// " (\w{3}) (dog)" matches part of "catdogpussycatdog"?: true

} // matches ()

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java & (Oracle, 2012)

http.//docs.oracle.com/javase/tutorial/essential/regex/matcher.html

Return the first matched substring.

private static String matchedSubstring(String stringToSearch,

Pattern pattern = Pattern.compile (patternString);
Matcher matcher = pattern.matcher (stringToSearch);

if (matcher.find()) {
return matcher.group() ;
} else {
return "";

}
}

System.out.println (matchedSubstring ("This is 34 good", "\\d+")):

// Output
34

"$s\"?: %$s%n", regex,

CC BY-NC-5A 4.0

stringToSearch,

String patternString) {

java.lang.String

Description

java.util.regex

public String
replace (CharSequence

target, CharSequence

replacement)

Replaces each substring of this string that matches
the literal target sequence with the specified literal
replacement sequence. The replacement proceeds
from the beginning of the string to the end, for
example, replacing "aa" with "b" in the string "aaa"
will result in "ba" rather than "ab".

public String
replaceFirst (String
regex, String
replacement)

Replaces the first substring of this string that
matches the given regular expression with the
given replacement

Pattern.compile(regex).
matcher(str).replaceFirst

(repl)

public String
replaceAll (String

Replaces each substring of this string that matches
the given regular expression with the given

Pattern.compile(regex).
matcher(str).replaceAll(r

epl)

regex, String replacement,

replacement)

final static String regex = " (\\w{3}) (dog)";

final static String stringToSearch = "catdogpussycatdog";

SaveDate: 2021-07-07 01:12

John Bentley of www.softmake.com.au

Page 12 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/matcher.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace%28java.lang.CharSequence,%20java.lang.CharSequence%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace%28java.lang.CharSequence,%20java.lang.CharSequence%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace%28java.lang.CharSequence,%20java.lang.CharSequence%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace%28java.lang.CharSequence,%20java.lang.CharSequence%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceFirst%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replaceAll%28java.lang.String,%20java.lang.String%29

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

final static String replacement = "$2cool$1l";

private static void replacement () {

}

// Substitute the matches (java.lang.String)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n",
regex, stringToSearch, replacement,
stringToSearch.replaceAll (regex, replacement)) ;
// Replace all " (\w{3}) (dog)" matches of "catdogpussycatdog" with "$2cool$1":
// dogcoolcatpussydogcoolcat

// Substitute the matches (java.util.regex)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n",
regex, stringToSearch, replacement,
Pattern.compile (regex) .matcher (stringToSearch) .replacelAll (replacement)) ;
// Replace all " (\w{3}) (dog)" matches of "catdogpussycatdog" with "$2cool$1":
// dogcoolcatpussydogcoolcat

// replacement

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java

java.lang.String Description java.util.regex
public String[] Splits this string around matches of the given regular | Pattern.compile(regex).
split (String regex, expression. split(str, n)

int limit)

public String[] Splits this string around matches of the given regular | Pattern.compile(regex).
split (String regex) expression. This method works the same as if you split(str)

invoked the two-argument split method with the
given expression and a limit argument of zero.
Trailing empty strings are not included in the
resulting array

private static void splits () {
String regex = "\\s*@\\s*";
String stringToSplit = "Apples @ Oranges@Bananas @ Pears";
int maxElements = 3; // 0 for all elements.

}

System.out.printf (
"\"%s\" defined to split \"%s\", into a max of %d elements: %$s%n", regex,
stringToSplit, maxElements,
Arrays.toString (stringToSplit.split(regex, maxElements)));

// "\s*@\s*" defined to split "Apples @ Oranges@Bananas Q@ Pears",

// into a max of 3 elements: [Apples, Oranges, Bananas @ Pears]

System.out.printf (
"\"%s\" defined to split \"%$s\", into a max of %d elements: $s%n", regex,
stringToSplit, maxElements,
Arrays.toString (Pattern.compile (regex) .split(stringToSplit, maxElements))) ;
// "\s*@\s*" defined to split "Apples @ Oranges@Bananas Q@ Pears",
// into a max of 3 elements: [Apples, Oranges, Bananas @ Pears]

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java based on
(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/vattern.html &
http://docs.oracle.com/javase/tutorial/essential/regex/matcher.html

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 13 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split%28java.lang.String,%20int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split%28java.lang.String,%20int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split%28java.lang.String,%20int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split%28java.lang.String%29
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/matcher.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Other Matcher Class Methods

Index methods in the Matcher class are available after a matcher.find () and hold
information about matches and, for each match, groups of captures.

e public int start ():Match index: Returns the start index of the previous match.

e public int end(): Match index: Returns the offset after the last character matched.

e public int start(int group): Capture Index for a Match: Returns the start index of the
subsequence captured by the given group during the previous match operation.

e public int end(int group): Capture Index for a Match: Returns the offset after the last character
of the subsequence captured by the given group during the previous match operation.

final static String regex = " (\\w{3}) (dog)";
final static String stringToSearch = "catdogpussycatdog";

final static int flags = Pattern.CASE INSENSITIVE | Pattern.COMMENTS;

Pattern pattern = Pattern.compile (BasicRegex.regex, flags);
Matcher matcher = pattern.matcher (stringToSearch);

int i = 1;

// List matches
while (matcher.find()) {
System.out.printf (
"Match (%d) of text \"%s\" starting at index %d and ending at %d.%n", i++,
matcher.group (), matcher.start(), matcher.end()):

if (displayCaptures) {
System.out.printf ("\tCapture groups: %$d%n", matcher.groupCount()) ;

// List capture groups within each match
for (int j = 0; j < matcher.groupCount () + 1; j++) {
System.out.printf ("\tCapture group (%d) of text \"%s\" starting"

+ " at index %d and ending at %d.%n", j, matcher.group(j),
matcher.start(j), matcher.end(j)):

} // for (int j

} // if (displayCaputeres
} // while (matcher

// Output
regex: (\w{3}) (dog)
stringToSearch: catdogpussycatdog
Match (1) of text "catdog" starting at index 0 and ending at 6.
Capture groups: 2
Capture group (0) of text "catdog" starting at index 0 and ending at 6.
Capture group (1) of text "cat" starting at index 0 and ending at 3.
Capture group (2) of text "dog" starting at index 3 and ending at 6.
Match (2) of text "catdog" starting at index 11 and ending at 17.
Capture groups: 2
Capture group (0) of text "catdog" starting at index 11 and ending at 17.
Capture group (1) of text "cat" starting at index 11 and ending at 14.
Capture group (2) of text "dog" starting at index 14 and ending at 17.

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java & (Oracle, 2012)
http.//docs.oracle.com/javase/tutorial/essential/regex/matcher.html

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 14 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#start%28%29
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#start%28int%29
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#end%28int%29
http://docs.oracle.com/javase/tutorial/essential/regex/matcher.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Regex Syntax

Pattern ("regex") Syntax

Construct | Matches

Single characters

X The character x

\\ The backslash character

\0n The character with octal value On (0 <=n <=7)

\Onn The character with octal value Onn (0 <=n <=7)

\Omnn The character with octal value Omnn (0 <=m <=3,0<=n <=7)
\xhh The character with hexadecimal value Oxhh

\uhhhh The character with hexadecimal value Oxhhhh

\x{h...h} The character with hexadecimal value 0xh...h
(Character.MIN CODE POINT <=O0xh..h <= Character.MAX CODE POINT)

\t The tab character ('\ u0009'")

\r The carriage-return character ('"\ u000D")

\n The newline (line feed) character ("\u000A')
\f The form-feed character ("\u000C')

\a The alert (bell) character ("\ u0007')

\e The escape character ("\u001B')

\cx The control character corresponding to x

(Oracle, 2012) http.//docs.oracle.com/javase/7/docs/api/fjava/util/regex/Pattern.hitml

Construct Matches

Listed character sets

[abc] a, b, or ¢ (included)

[Mabc] Any character except a, b, or ¢ (excluded)

Ranged character sets.

[a-z] a through z (included)

[Ma-z] Any character except a through z (excluded)

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 15 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#MIN_CODE_POINT
http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#MAX_CODE_POINT
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

JavaReference-Language-RegularExpressions.docx

CC BY-NC-5A 4.0

Combined character sets.

[a-zA-Z]

a through z or A through Z, inclusive (range)

[a-d[m-p]]

a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]]

d, e, or f (intersection)

[a-z&&[bc]]

a through z, except for b and c: [ad-z] (subtraction)

[a-zée&[*m-pl]

a through z, and not m through p: [a-1q-z](subtraction)

Predefined character sets

Any character (may or may not match 1ine terminators)

\d A digit: [0-9]

\D A non-digit: [*0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [*\s]

\w A word character. That is, identifier legal: [a-zA-Z_0-9]
\W A non-word character. That is, not identifier legal: [*\ w]

POSIX character sets (US-ASCII only, don't use for handling unicode characters)

\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character:[A-Z]

\ p{ASCII} All ASCIIL:[\x00-\ x7F]

\p{Alpha} An alphabetic character:[\ p{Lower}\ p{Upper}]
\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\ p{Alpha}\ p{Digit}]
\ p{Punct} Punctuation: One of I"#$%&'()*+,-./:;<=>?@[\ " _{ |}~
\p{Graph} A visible character: [\ p{Alnum}\ p{Punct}]

\ p{Print} A printable character: [\ p{Graph}\x20]
\p{Blank} A space or a tab: [\t]

\p{Cntrl} A control character: [\ x00-\ x1F\ x7F]

\p{XDigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

java.lang.Character sets (simple java character type). Unicode Safe.

\pfjavaLetter}

Equivalent to java.lang.Character.isLetter() [E.g. "fl|Gre"]

\pfjavaDigit}

Equivalent to java.lang.Character.isDigit() [E.g. "78 ", the last is Arabic 7"]

\pfjavaLetterOrDigit}

Equivalent to java.lang.Character.isLetterOrDigit ()

\p{javaLowerCase}

Equivalent to java.lang.Character.isLowerCase()

SaveDate: 2021-07-07 01:12

John Bentley of www.softmake.com.au

Page 16 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#lt
http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#jcc

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

\p{javaUpperCase} Equivalent to java.lang.Character.isUpperCase()
\ p{javaWhitespace} Equivalent to java.lang.Character.isWhitespace()
\pf{javaMirrored} Equivalent to java.lang.Character.isMirrored() [(){}[]<>]

Character sets for Unicode scripts, blocks, categories and binary properties

\p{IsLatin} A Latin script character (script) (SE7)
\ p{IsAlphabetic} An alphabetic character (binary property) (SE7)
\p{InGreek} A character in the Greek block
\p{InBasic_Latin} A character in the Basic Latin block
(block constants)
\p{Lu} Letter, uppercase.
\p{Ll} Letter, lowercase.
\p{L} Letter, any.
\p{Sm} Symbol, maths.
\p{Sc} Symbol, currency.
\p{S} Symbol, any.
(category constants)
\P{InGreek} Any character except one in the Greek block (negation)
[\p{L}&&["\ p{Lu}]] Any letter except an uppercase letter (subtraction)

(Oracle, 2012) http.//docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.hitml

XY X followed by Y

XY Either X or Y

X) X, as a capturing group
Greedy Reluctant Possessive Meaning

X* X*? X*+ X, many times or, failing that, zero

X? X?? X?+ X, once or, failing that, zero

X+ X+? X++ X, many times or, failing that, once
X{n} X{n}? X{n}+ X, exactly n times

X{n,} X{n,}? X{n,}+ X, at least n times

X{n,m} X{n,m}? X{n,m}+ X, at least n but not more than m times

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/quant.html

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 17 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Character.html#isMirrored%28char%29
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#usc
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#ubpc
http://developer.android.com/reference/java/lang/Character.UnicodeBlock.html
http://developer.android.com/reference/java/lang/Character.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Construct | Matches

Boundary matchers

A The beginning of input. If multiline flag set: beginning of line.

$ The end of input. If multiline flag set: end of line.

\A The beginning of the input

\Z The end of the input but for the final terminator, if any

\z The end of the input

\b A word boundary

\B A non-word boundary

\G The end of the previous match
Equivalent

Constant EE ;edded Description
Expression

Pattern. CASE_INSENSITIVE

(%)

Enables case-insensitive matching. Case-insensitive matching
assumes that only characters in the US-ASCII charset are being
matched. Unicode-aware case-insensitive matching can be
enabled by specifying the UNICODE_CASE flag in conjunction
with this flag.

Pattern.UNICODE_CASE

Enables Unicode-aware case folding. When this flag is specified
then case-insensitive matching, when enabled by the
CASE_INSENSITIVE flag, is done in a manner consistent with the
Unicode Standard. By default, case-insensitive matching assumes
that only characters in the US-ASCII charset are being matched.

Pattern. MULTILINE

Enables multiline mode. In multiline mode the expressions * and
$ match operate with respect to each line (for strings-to-search
separated by a line terminator). When flag not set: these
expressions only match at the beginning and the end of the entire
input sequence.

Pattern.DOTALL

Enables dotall mode. In dotall mode, the expression . matches
any character, including a line terminator. By default this
expression does not match line terminators.

Pattern.UNIX_LINES

Enables Unix lines mode. In this mode, only the '\n' line
terminator is recognized in the behavior of ., *, and $.

Pattern.LITERAL

None

Enables literal parsing of the pattern. When this flag is specified
then the pattern is treated as a sequence of literal characters.
Metacharacters or escape sequences in the pattern will be given
no special meaning. The flags CASE_INSENSITIVE and
UNICODE_CASE retain their impact on matching when used in
conjunction with this flag. The other flags become superfluous

SaveDate: 2021-07-07 01:12

John Bentley of www.softmake.com.au Page 18 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#lt

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Pattern. COMMENTS

Permits whitespace and comments in the pattern. In this mode,
(?x) whitespace is ignored, and embedded comments starting with #
are ignored until the end of a line.

Pattern. CANON_EQ

Enables canonical equivalence. When this flag is specified, two
characters will be considered to match if, and only if, their full
canonical decompositions match. The expression "a\u030A" (*),
for example, will match the string "\u030A" (*) when this flag is
specified. By default, matching does not take canonical
equivalence into account.

None

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/pattern.hitml

\ Nothing, but quotes the following character
\Q Nothing, but quotes all characters until \E
\E Nothing, but ends quoting started by \Q

(Oracle, 2012) http.//docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.hitml

Basic Capture

X)

X, as a capturing group

Back references

\n

Whatever the nth capturing group matched. n =1 to 9. n = 0 throws exception.

\ k<name> (SE7)

Whatever the named-capturing group "name" matched

Special constructs (named-capturing)

(?<name>X) (SE7)

X, as a named-capturing group

Special constructs (non-capturing)

(?:X)

X, as a non-capturing group

(?idmsux-idmsux)

Nothing, but turns match flags i d m s u x on - off

(?idmsux-idmsux:X)

X, as a non-capturing group with the given flagsi d m s u x on - off

(?=X) X, via zero-width positive lookahead (atomic)

(?1X) X, via zero-width negative lookahead (atomic)
(?<=X) X, via zero-width positive lookbehind (atomic)
(?<IX) X, via zero-width negative lookbehind (atomic)
(?>X) X, as an independent, non-capturing group (atomic)

SaveDate: 2021-07-07 01:12

John Bentley of www.softmake.com.au Page 19 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#groupname
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#groupname
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#UNIX_LINES
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#MULTILINE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#DOTALL
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#UNICODE_CASE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#COMMENTS
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#CASE_INSENSITIVE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#UNIX_LINES
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#MULTILINE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#DOTALL
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#UNICODE_CASE
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#COMMENTS

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Replacement Syntax

Capturing reference

$g[g="'0".."91] Capture group. '0' is the whole group. '1' is the first match.

${name} (SE 7) Named capture group.

\$ Literal dollar sign.

\x Escape literal characters

(Oracle, 2012)
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement % 28java.lang. S tringBuffer, % 2
Ojava.lang.String %29

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 20 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement%28java.lang.StringBuffer,%20java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#appendReplacement%28java.lang.StringBuffer,%20java.lang.String%29

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Regex Rules

General

Match indices are counted such that characters occupy cells and indices point to the cell
boundaries, starting at the left edge, at zero. The end index comes after the cell of the
last character.

Cell 0 Cell 1 Cell 2

Index 0 Index 1 Index 2 Index 3

regex: foo
stringToSearch: foo
Match (1) of text "foo" starting at index 0 and ending at 3.

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/literals.html

When using the backslash ('\') character in Java Strings, where Java does not recognize
the escape sequence in string terms, you'll have to escape the backslash character with
another one.

// Java String doesn't recognize "\.". Therefore escape the backslash.
final static String regex = "cat\\.";
final static String stringToSearch = "cat.";

// Regex Operation Output

regex: cat\.

stringToSearch: cat.

Match (1) of text "cat." starting at index 0 and ending at 4.

// Java String recognizes "\t". Therefore don't escape the backslash.
final static String regex = "cat\theat";
final static String stringToSearch = "cat heat";

// Regex Operation Output

regex: cat heat
stringToSearch: cat heat
Match (1) of text "cat heat" starting at index 0 and ending at 8.

(Bentley, TutorialAtOracle Code Examples - Regex, 2013) RegexDemo.java

Regex pattern metacharacters: < ([{\"=-=S$!|]1})?2*+.>

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/literals.html

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 21 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/literals.html
http://docs.oracle.com/javase/tutorial/essential/regex/literals.html

JavaReference-Language-RegularExpressions.docx

Quantifiers

CC BY-NC-5A 4.0

match
match

A meaning of "zero" in "... or, failing that, zero" times for quantification.
// Search for "foo" and any character (.), once or, failing that, zero.
final static String regex = "foo.?";
final static String stringToSearch = "fooxfoo";
regex: foo.?
stringToSearch: fooxfoo
Match (1) of text "foox" starting at index 0 and ending at 4. // "Once"
Match (2) of text "foo" starting at index 4 and ending at 7. // "Zero"

Zero length matches can occur with: an empty regex pattern; an empty string to search;
between any two characters of an string to search; or at the beginning or end of an

string to search

// Empty regex pattern.
final static String regex =

wn o,
’

final static String stringToSearch = "cat";

regex:

stringToSearch: cat

Match (1) of text "" starting at index 0 and ending at 0.
Match (2) of text "" starting at index 1 and ending at 1.
Match (3) of text "" starting at index 2 and ending at 2.
Match (4) of text "" starting at index 3 and ending at 3.
// Empty string to search

final static String regex = "a*";

final static String stringToSearch = "";

regex: a*

stringToSearch:

Match (1) of text "" starting at index 0 and ending at 0.
// Between characters of string to search

final static String regex = "a*";

final static String stringToSearch = "cat";

regex: a*

stringToSearch: cat

Match (1) of text "" starting at index 0 and ending at 0.
Match (2) of text "a" starting at index 1 and ending at 2.
Match (3) of text "" starting at index 2 and ending at 2.
Match (4) of text "" starting at index 3 and ending at 3.

// At the end of the string to search

final static String regex = "a*";

final static String stringToSearch = "aaa";

regex: a*
stringToSearch: aaa

Match (1) of text "aaa" starting at index 0 and ending at 3.
Match (2) of text "" starting at index 3 and ending at 3.

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/quant.hitml

Note

regex: a¥*
stringToSearch: aaa

Match (1) of text "aaa" starting at index 0 and ending at 3.
Match (2) of text "" starting at index 3 and ending at 3.

regex: aa*
stringToSearch: aaa

Match (1) of text "aaa" starting at index 0 and ending at 3.

(Bentley, TutorialAtOracle Code Examples - Regex, 2013) RegexDemo.java

SaveDate: 2021-07-07 01:12

John Bentley of www.softmake.com.au

Page 22 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Differences between greedy quantifiers:

e (*) many times or, failing that, zero;
e (?) once or, failing that, zero; and
e (+) many times or, failing that, once.

// Many times or, failing that, zero

regex: a*

stringToSearch: aa

Match (1) of text "aa" starting at index 0 and ending at 2.
Match (2) of text "" starting at index 2 and ending at 2.

// Once or, failing that, zero

regex: av?

stringToSearch: aa

Match (1) of text "a" starting at index 0 and ending at 1.
Match (2) of text "a" starting at index 1 and ending at 2.
Match (3) of text "" starting at index 2 and ending at 2.

// Many times or, failing that, once

regex: a+

stringToSearch: aa

Match (1) of text "aa" starting at index 0 and ending at 2.

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/quant.hitml

Quantifiers can attach to Character Set Ranges and Capturing Groups (as well as single
characters and other character sets).

// Quantified Character Set Ranges
regex: [abc] {3}
stringToSearch: aaaabcabcabc

Match (1) of text "aaa" starting at index 0 and ending at 3.
Match (2) of text "abc" starting at index 3 and ending at 6.
Match (3) of text "abc" starting at index 6 and ending at 9.
Match (4) of text "abc" starting at index 9 and ending at 12.

// Quantified Capturing Group

regex: (abc) {3}

stringToSearch: aaaabcabcabc

Match (1) of text "abcabcabc" starting at index 3 and ending at 12.

// Note the following regex (pattern) only quantifies the single character 'c'.
regex: abc{3}

stringToSearch: aaaabcabcabc

No match found.

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/quant.hitml

The differences between greedy, reluctant and possessive quantifiers.

A regex pattern with a quantifier is processed against that part of the string-to-search (the 'input' string) that
hasn't yet been matched in three steps:

e The quantified portion of the regex pattern eats the whole string-to-search in some manner:
a. Greedy: Eats the whole string-to-search
b. Reluctant (?): Doesn't eat any of the whole string-to-search.
c. Possessive (+): Eats the whole string-to-search.

e The whole regex pattern, not just the quantified portion of the regex pattern, is then compared to the
eaten whole string-to-search (so for a Reluctant (?) quantifier there is no comparison).

e If there is no match then the string-to-search is further processed by:

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 23 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

a. Greedy: "backing off" the rightmost character in the string-to-search. The quantified portion
of the regex pattern and the non-quantified portion of the regex pattern is now compared to
the string-to-search (all the characters from left to right less one). If there is a match the
process stops. Otherwise this is repeated until there are no more characters in the string-to-
search.

b. Reluctant (?): Looking at the leftmost character in the string-to-search. The quantified portion
of the regex pattern and the non-quantified portion of the regex pattern is now compared to
the string-to-search (only the left most character). If there is a match this is noted. Match or
not the process is repeated by appending the next leftmost character from the string-to-search
until the string-to-search is exhausted.

c. Possessive (+): There is one, and only one, attempt at a match against the whole string-to-
search. If there is no match the process stops (there is no backing off).

// Greedy [No symbol]

regex: .*foo

stringToSearch: xfooxxxfoo

Match (1) of text "xfooxxxfoo" starting at index 0 and ending at 10.

// Greedy Steps

// Quantified + Unquantified Pattern Resolution V stringToSearch.
"xfooxxxfoo" + "foo" V "xfooxxxfoo" -> No Match.

"xfooxxxfo" + "foo" V "xfooxxxfoo" -> No Match.

"xfooxxxf" + "foo" V "xfooxxxfoo" -> No Match.

"xfooxxx" + "foo" V "xfooxxxfoo" -> Match ("xfooxxxfoo")

// Reluctant [?]

regex: .*?foo

stringToSearch: xfooxxxfoo

Match (1) of text "xfoo" starting at index 0 and ending at 4.
Match (2) of text "xxxfoo" starting at index 4 and ending at 10.

// Reluctant Steps

// Quantified + Unquantified Pattern Resolution V stringToSearch.

"""+ "foo" V "xfooxxxfoo" -> No match

"x" + "foo" V "xfooxxxfoo" -> Match (1) of text "xfoo" starting at index 0 and ending at 4.
"xfoo" from "xfooxxxfoo" consumed

"x" + "foo" V "xxxfoo" -> No match
"xx" + "foo" V "xxxfoo" -> No match
"xxx" + "foo" v "xxxfoo" -> Match (2) of text "xxxfoo" starting at index 4 and ending at 10.

"xxxfoo" from "xxxfoo" consumed.

// Possessive [+]

regex: .*+foo
stringToSearch: xfooxxxfoo
No match found.

// Possessive steps
// Quantified + Unquantified Pattern Resolution V stringToSearch.
"xfooxxxfoo" + "foo" V "xfooxxxfoo" -> No Match.

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/quant.html
(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java

Another example showing the differences between greedy, reluctant and possessive
guantifiers.

// Greedy [No Symbol]

regex: .*foo

stringToSearch: xfooxxxfooa

Match (1) of text "xfooxxxfoo" starting at index 0 and ending at 10.

// Greedy Steps

// Quantified + Unquantified Pattern Resolution V stringToSearch.
"xfooxxxfooa" + "foo" V "xfooxxxfooa" -> No Match

"xfooxxxfoo" + "foo" V "xfooxxxfooa" -> No Match

"xfooxxxfo" + "foo" V "xfooxxxfooa" -> No Match

"xfooxxxf" + "foo" V "xfooxxxfooa" -> No Match

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 24 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/quant.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

"xfooxxx" + "foo" V "xfooxxxfooa" -> Match (1) of text "xfooxxxfoo" starting at index 0 and
ending at 10.

"xfooxxxfoo" in "xfooxxxfooa" consumed leaving "a"

"a" + "foo" V "a" -> No Match

""" + "foo" V "a" -> No Match

// Reluctant [?]

regex: .*?foo

stringToSearch: xfooxxxfooa

Match (1) of text "xfoo" starting at index 0 and ending at 4.
Match (2) of text "xxxfoo" starting at index 4 and ending at 10.

// Reluctant Steps

// Quantified + Unquantified Pattern Resolution V stringToSearch.

""" + "foo" V "xfooxxxfooa" -> No match

"x" + "foo" V "xfooxxxfooa" -> Match (1) of text "xfoo" starting at index 0 and ending at 4.
"xfoo" from "xfooxxxfooa" consumed

"x" + "foo" V "xxxfooa" -> No match

"xx" + "foo" V "xxxfooa" -> No match

xxx" + "foo" v "xxxfooa" -> Match (2) of text "xxxfoo" starting at index 4 and ending at
10.

"xxxfoo" from "xxxfooa" consumed leaving
"a" + "foo" V "a" -> No Match

"" + "foo" V "a" -> No Match

a

// Possessive [+]

regex: .*+foo
stringToSearch: xfooxxxfooa
No match found.

// Possessive steps
// Quantified + Unquantified Pattern Resolution V stringToSearch.
"xfooxxxfooa" + "foo" V "xfooxxxfooa" -> No Match.

Showing how eating the string-to-search applies only to that part that hasn't yet been
matched by the unquantified pattern.

// Greedy [No Symbol]

regex: foo.*

stringToSearch: xfooxxxfooa

Match (1) of text "fooxxxfooa" starting at index 1 and ending at 11.

// Greedy Steps

// Unquantified + Quantified pattern Resolution V stringToSearch.

In "xfooxxxfooa" "foo" matches starting at index 1 and ending at 4.

".*" attempts match against the remainder, "xxxfooa", and succeeds.

Therefore the first match + second match combines to "foo" + "xxxfooa" = "fooxxxfooa"
Processing stops because there are no more characters to consume

// Reluctant [?]

regex: foo.*?

stringToSearch: xfooxxxfooa

Match (1) of text "foo" starting at index 1 and ending at 4.
Match (2) of text "foo" starting at index 7 and ending at 10.

// Reluctant Steps

In "xfooxxxfooa" "foo" matches starting at index 1 and ending at 4.
".*" attempts match against the first position in "xxxfooa", a zero length string. Success.
Therefore the first match + second match combines to "foo" + "" = "foo" (index 1 to 4)

The remaining input string "xxxfooa" is then tested against the whole pattern:

In "xxxfooa" "foo" matches starting at index 7 and ending at 10.

".*" attempts match against the first position in "fooa", a zero length string. Success.
Therefore the first match + second match combines to "foo" + "" = "foo" (index 7 to 10)

// Possessive [+]

regex: foo.*+

stringToSearch: xfooxxxfooa

Match (1) of text "fooxxxfooa" starting at index 1 and ending at 11.

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 25 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx

// Possessive Steps
In "xfooxxxfooa" "foo" matches starting at index 1 and ending at 4.

X" attempts match against the remainder, "xxxfooa", and succeeds.

CC BY-NC-5A 4.0

Therefore the first match + second match combines to "foo" + "xxxfooa" = "fooxxxfooa"
Processing stops because only one attempt at a match is attempted for a possessive step.

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegeDemo.java

Boundary Matchers

"A" and "S$" in regex patterns. If multiline flag not set (default): beginning and end of
input. If multiline flag set: beginning and end of line.

final static String stringToSearch = "dogcat dog\r\ndog";

// ***xx*kxx Multiline flag not set (default) ***x**x
// Beginning of input.

regex:

~dog

stringToSearch: dogcat dog

dog
Match

(1) of text "dog" starting at index 0 and ending at 3.

// End of input

regex:

dog$

stringToSearch: dogcat dog

dog
Match

(1) of text "dog" starting at index 12 and ending at 15.

Ay Sesessssnsss MpllEdildng Elae SEE s
// Beginning of the line

regex:

~dog

stringToSearch: dogcat dog

dog
Match
Match

(1) of text "dog" starting at index 0 and ending at 3.
(2) of text "dog" starting at index 12 and ending at 15.

// End of the line (Mutliline flag set)

regex:

dog$

stringToSearch: dogcat dog

dog
Match
Match

(1) of text "dog" starting at index 7 and ending at 10.
(2) of text "dog" starting at index 12 and ending at 15.

Beginning and end of input (the string-to-search), regardless of the multiline flag
settings.

final static String stringToSearch = "dogcat dog\r\ndog\r\n";

// Beginning of the input
final static String regex = "\\Adog";

regex:

\Adog

stringToSearch: dogcat dog

dog

Match

// Space from end of line characters.
(1) of text "dog" starting at index 0 and ending at 3.

// End if the input but for the final terminator, if any
final static String regex = "dog\\z";

regex:

dog\Z

stringToSearch: dogcat dog

dog

// Space from end of line characters.

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au

Page 26 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx

Match

(1

)

of text "dog"

// End of the input (all input)

final static String regex = "dog\\z";
regex: dog\z
stringToSearch: dogcat dog

dog

No match found.

starting at index 12 and ending at 15.

// Space from end of line characters.

Word boundary examples.

// Word boundary
dog\b
stringToSearch: dogcat dog dog

regex:

Match
Match

(1
(2

)
)

of text "dog"

// Not a word boundary
dog\B
stringToSearch: dogcat dog dog

regex:

Match

(1

)

of text "dog" starting at index 0 and ending at 3.

starting at index 7 and ending at 10.
of text "dog" starting at index 11 and ending at 14.

CC BY-NC-5A 4.0

"\G" matches the index of the end of the previous (successful) match. During the first
match attempt \G matches the start of the string.

// Only the first cat comes after a prior match (before the whole process fails).

final static String regex = "\\Gcat";

final static String stringToSearch = "cat catcat";
regex: \Gcat

stringToSearch: cat catcat

Match

(1

)

of text "cat" starting at index

// Only the first four letters come after a prior ma

final static String regex = "\\G\\w";

final static String stringToSearch = "test me";
regex: \G\w

stringToSearch: test me

Match (1) of text "t" starting at index 0 and ending
Match (2) of text "e" starting at index 1 and ending
Match (3) of text "s" starting at index 2 and ending
Match (4) of text "t" starting at index 3 and ending

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java based on
(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/bounds.html and

0 and ending at 3.

tch (before the whole process fails).

at
at
at
at

DSw N

(Goywaert, 2009) http//www.regular-expressions.info/continue.html

Flags

Flag setting in code.

final static String regex = "dog";
final static String stringToSearch = "Dog dog";
final static String replacement = "#";

// Bitwise "or" to set both flags.

final static int flags = Pattern.CASE INSENSITIVE | Pattern.UNICODE_ CASE;

Pattern pattern =
Matcher matcher =

while

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/pattern.html

SaveDate: 2021-07-07 01:12

Pattern.compile (BasicRegex.regex,
pattern.matcher (stringToSearch) ;

(matcher.find()) {

flags) ;

John Bentley of www.softmake.com.au

Page 27 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/bounds.html
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Flag setting in the pattern.

final static String regex = " (?iux)dog# comments";
final static String stringToSearch = "Dog dog";
final static String replacement = "@";

// Substitute the matches (java.lang.String)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n", regex,
stringToSearch, replacement, stringToSearch.replaceAll (regex, replacement));

// Output
Replace all " (?iux)dog# comments" matches of "Dog dog" with "@": @ @

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/pattern.html

Quotation

Escape metacharacters: with a backslash ("\" or "\\"); enclose between "\Q" and "\E"; or
use the Pattern.LITERAL flag (there is no equivalent Embedded Flag).

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/literals.html

Quotation example, set in pattern.

// With Quoting
final static String regex = "dogpi\\QI[g|h]I\\E";
final static String stringToSearch = "catdogpilglhl";

regex: dogpi\Q[g|h]\E

stringToSearch: catdogpilglh]
Match (1) of text "dogpil[glh]" starting at index 3 and ending at 13.

Captures

Capturing groups are a way to treat one or more characters as a single unit. The capture
group can be later referenced: in the current pattern through a backreference ("\"); or in
a replacement string with a dollar sign ("$").

Named capture groups, in pattern backreferences or replacement string capture
references, is a SE7 Feature.

Capture groups are numbered and identified by counting their opening parentheses from
left to right.

// Regex Pattern

((A) (B(C))

1 ((A) (B(C)))
2. (B)

3 (B(C))

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 28 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/literals.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

4. (C)

regex: ((\w{3}) (C.{4}(W.*)))
stringToSearch: The CrackWhip
Match (1) of text "The CrackWhip" starting at index 0 and ending at 13.
Capture groups: 4
Capture group (0) of text "The CrackWhip" starting at index 0 and ending at 13.
Capture group (1) of text "The CrackWhip" starting at index 0 and ending at 13.
Capture group (2) of text "The" starting at index 0 and ending at 3.
Capture group (3) of text "CrackWhip" starting at index 4 and ending at 13.
Capture group (4) of text "Whip" starting at index 9 and ending at 13.
replacement: #$4$31$2|$1|S0#
replacementResult: #Whip|CrackWhip|The|The CrackWhip|The CrackWhip#

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/groups.html

Retrieve the number of captured groups, for a match, with groupCount () .

final String regex = "(\\w{3}) (\\w{3})";
final String stringToSearch = "foobar";
Pattern pattern = Pattern.compile (regex);

Matcher matcher = pattern.matcher (stringToSearch);

// Loop through matches

while (matcher.find()) {
// Get the number of capture groups for a particular match
System.out.printf ("\tCapture groups: %$d%n", matcher.groupCount()) ;

}
(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java

There is also a special group, group 0, which always represents the entire expression .
groupCount ()does not count the special group, group 0.

Non capturing groups do not count towards the groupCount () total.

See Java Coding Operations above, page 10, for an example of how capturing groups for
each match is coded.

Capture group example

regex: (\w{3}) (dog)
stringToSearch: catdogpussyratdog
Match (1) of text "catdog" starting at index 0 and ending at 6.
Capture groups: 2
Capture group (0) of text "catdog" starting at index 0 and ending at 6.
Capture group (1) of text "cat" starting at index 0 and ending at 3.
Capture group (2) of text "dog" starting at index 3 and ending at 6.
Match (2) of text "ratdog" starting at index 11 and ending at 17.
Capture groups: 2
Capture group (0) of text "ratdog" starting at index 11 and ending at 17.
Capture group (1) of text "rat" starting at index 11 and ending at 14.
Capture group (2) of text "dog" starting at index 14 and ending at 17.
replacement: $2$1
replacementResult: dogcatpussydograt

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 29 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/groups.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Look ahead and look behind non capture groups effect a prior or subsequent pattern.
The look [ahead|behind] non capture group makes the accompanying pattern succeed or
fail to match based on the pattern of both groups. The terms "look ahead" and "look
behind" refer to not to the non-capture group itself but the accompanying pattern.

// Look ahead positive.

regex: (applelcherry) (?= chocolate)

stringToSearch: Today's specials are apple chocolate pie and cherry banana pie.
Match (1) of text "apple" starting at index 21 and ending at 26.

// Look ahead negative.

regex: (apple]|cherry) (?! chocolate)

stringToSearch: Today's specials are apple chocolate pie and cherry banana pie.
Match (1) of text "cherry" starting at index 45 and ending at 51.

// Look behind positive.

regex: (?<=fried) (bananas|clam)

stringToSearch: Tomorrow's special is fried bananas with baked clam.
Match (1) of text "bananas" starting at index 28 and ending at 35.

// Look behind negative

regex: (?<!fried) (bananas|clam)

stringToSearch: Tomorrow's special is fried bananas with baked clam.
Match (1) of text "clam" starting at index 47 and ending at 51.

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java based on
(Schreckmann, 2003)

Each capture normally consumes characters in the string-to-search ("input string") on
each match. However, strings matched by an "atomic" group are not consumed.

The atomic nature of Look ahead and look behinds is exploitable like this.

// Matches all words starting with "J" that precede "Schmidt "

// (note the space following the t). The ".+Schmidt " part of the regular expression

// is not consumed because it is in an atomic capture group.

regex: (J\w+) (?=.+Schmidt)

stringToSearch: John Jacob Jingleheimer Schmidt His name is my name, too! Whenever we go
out, The people always shout There goes John Jacob Jingleheimer Schmidt!

Match (1) of text "John" starting at index 0 and ending at 4.

Match (2) of text "Jacob" starting at index 5 and ending at 10.

Match (3) of text "Jingleheimer" starting at index 11 and ending at 23.

// By contrast, observe that a regular (non-atomic) non-capture group consumes
// the charactersin the string-to-search.
regex: (J\w+) (?:.+Schmidt)
stringToSearch: John Jacob Jingleheimer Schmidt His name is my name, too! Whenever we go
out, The people always shout There goes John Jacob Jingleheimer Schmidt!
Match (1) of text "John Jacob Jingleheimer Schmidt " starting at index 0 and ending at 32.
Capture groups: 1
Capture group (0) of text "John Jacob Jingleheimer Schmidt " starting at index O
and ending at 32.
Capture group (1) of text "John" starting at index 0 and ending at 4.

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java based on
(Schreckmann, 2003), Look Ahead and Look Behind Constructs, Search for "Jim Yingst pointed out an important issue ..."

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 30 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

An independent non-capture group is a non-capture group that is atomic.

// Normal matching
regex: a(bc|b)c
stringToSearch: abccabc
Match (1) of text "abcc" starting at index 0 and ending at 4.
Capture groups: 1
Capture group (0) of text "abcc" starting at index 0 and ending at 4.
Capture group (1) of text "bc" starting at index 1 and ending at 3.
Match (2) of text "abc" starting at index 4 and ending at 7.
Capture groups: 1
Capture group (0) of text "abc" starting at index 4 and ending at 7.
Capture group (1) of text "b" starting at index 5 and ending at 6.

// Normal non-capturing group
regex: a(?:bc|b)c
stringToSearch: abccabc
Match (1) of text "abcc" starting at index 0 and ending at 4.
Capture groups: 0
Capture group (0) of text "abcc" starting at index 0 and ending at 4.
Match (2) of text "abc" starting at index 4 and ending at 7.
Capture groups: 0
Capture group (0) of text "abc" starting at index 4 and ending at 7.

// Independent (atomic) non-capturing group
regex: a(?>bc|b)c
stringToSearch: abccabc
Match (1) of text "abcc" starting at index 0 and ending at 4.
Capture groups: 0
Capture group (0) of text "abcc" starting at index 0 and ending at 4.

A backreference occurs in a regex pattern and refers to a sub-sequence in the string-to-
Search matched by a previous capture group. In effect they identify repeating groups of
characters.

The syntax is backslash followed by a number from 1 to 9 (e.g. "\1") but in Java Strings
these are escaped (e.g. "\\1").

A zero ("\0") backreference throws an exception (you can't remember the whole match
before you've processed it).

Backreference example.

final static String regex = " (\\w{3}) (\\1)";

regex: (\w{3}) (\1)

stringToSearch: catdogcatcat

Match (1) of text "catcat" starting at index 6 and ending at 12.
Capture groups: 2
Capture group (0) of text "catcat" starting at index 6 and ending at 12.
Capture group (1) of text "cat" starting at index 6 and ending at 9.
Capture group (2) of text "cat" starting at index 9 and ending at 12.

"catdog" not matched: the backreference is not simply referring to the kind of match. That is, in this example
when the backtrack "\ 1" references "(\w{3})" the backtrack is not asking "Match any three word characters
again."

"catcat" is matched: the backreference references the actual match ("cat") of the capture group "(\w{3})".

(Oracle, 2012) http.//docs.oracle.com/javase/tutorial/essential/regex/qroups.html

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 31 of 36

http://www.softmake.com.au/
http://docs.oracle.com/javase/tutorial/essential/regex/groups.html

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Backreferences reference a capture group, not a mere prior match.

// Works
final static String regex = " (\\d{2})\\1";

regex: (\d{2})\1
stringToSearch: AAAA 9999
Match (1) of text "9999" starting at index 5 and ending at 9.
Capture groups: 1
Capture group (0) of text "9999" starting at index 5 and ending at 9.
Capture group (1) of text "99" starting at index 5 and ending at 7.
replacement: @
replacementResult: AAAA @

// Doesn't work
final static String regex = "\\d{2}\\1";

regex: \d{2}\1
stringToSearch: AAAA 9999
No match found.

Named backreferences are a SE7 feature.

Replacement

Replacement strings can contain references to capture groups in the form of: $g, where
g = 0 to 9. Refer to the special capture group, which might equal a match, with $0.

regex: ([crlat) (.at)
stringToSearch: catdogratbat
Match (1) of text "ratbat" starting at index 6 and ending at 12.
Capture groups: 2
Capture group (0) of text "ratbat" starting at index 6 and ending at 12.
Capture group (1) of text "rat" starting at index 6 and ending at 9.
Capture group (2) of text "bat" starting at index 9 and ending at 12.
replacement: #$2|$1|S$S0#
replacementResult: catdogi#bat|rat|ratbat#

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java

Note that by default the replacement string replaces the special capture group ($0)
which, in effect replaces a match.

// Replace the special capture group by default
regex: cat
stringToSearch: pigcatdog
Match (1) of text "cat" starting at index 3 and ending at 6.
Capture groups: 0
Capture group (0) of text "cat" starting at index 3 and ending at 6.
replacement: @
replacementResult: pigRdog

// Replace the special capture group with itself
regex: cat
stringToSearch: pigcatdog
Match (1) of text "cat" starting at index 3 and ending at 6.
Capture groups: 0
Capture group (0) of text "cat" starting at index 3 and ending at 6.
replacement: $0
replacementResult: pigecatdog

(Bentley, TutorialAtOracle Code Examples - Regex, 2013) RegexDemo.java

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 32 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0
Named capture groups, ${name}, is a SE7 feature.

Java Single line ReplaceAll () .

// ... from previous example.

// Substitute the matches (java.lang.String)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n", regex,
stringToSearch, replacement, stringToSearch.replaceAll (regex, replacement));

// Substitute the matches (java.util.regex)
System.out.printf ("Replace all \"%s\" matches of \"%s\" with \"%s\": %s%n", regex,
stringToSearch, replacement, Pattern.compile (regex) .matcher (stringToSearch)
.replaceAll (replacement)) ;
// Output for either
Replace all " ([cr]lat) (.at)" matches of "catdogratbat" with "#$2|S$1|$0#":
catdog#bat |rat|ratbat#

(Bentley, Tutorial AtOracle Code Examples - Regex, 2013) RegexDemo.java

Unicode Support

For Unicode Support in the Java Language in general:

See (Bentley, Java Reference - Language.dox, 2013), Strings > Unicode Representations

Unicode Support in Java Regex's occurs in several ways: native support in strings;
reference a character by their Unicode Code Point in hexadecimal; or reference a
Unicode character set through scripts, blocks, categories and binary properties.

// Code

// \u03B2 is the Unicode Code Point for the greek letter beta "B".
// \u5229 is the Unicode Code Point for the Hiragana letter "#l".

final static String regex = " (Fl) | (\u03B2) |\\p{InHiragana}";

final static String stringToSearch = "Hello #\u5229 Greek \u03B2";
final static String replacement = "@";

// Output

// How the regex pattern resolves when output.
regex: (F]) | (B) |\p{InHiragana}

// How the stringToSearch resolves when output.
stringToSearch: Hello #IF| Greek B

Match (1) of text "fl" starting at index 6 and ending at 7.
Match (2) of text "Alv starting at index 7 and ending at 8.
Match (3) of text "B" starting at index 15 and ending at 16.

replacement: @
replacementResult: Hello Q@ Greek @

(Bentley, TutorialAtOracle Code Examples - Regex, 2013) RegexDemo.java
See also above, Pattern ("regex") Syntax

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 33 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0
For the set of legal Unicode Character Sets defined through scripts, blocks, categories
and binary properties follow the links ...

... above, Character sets, " Character sets for Unicode scripts, blocks, categories and binary properties"

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 34 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

References, word

Bentley, J. (2013, Jul 13). Java Reference - Language.dox.

Bentley, J. (2013, Jul). Tutorial AtOracle Code Examples - Regex. Retrieved from
C:\ Users\ John\ Documents\Sda\ Code\ Java\ Examples\ Tutorial AtOracle\ HelloWorld

Goyvaert, J. (2009, Jun 17). Retrieved Jul 10, 2013, from regular-expressions.info:
http:/ /www.regular-expressions.info/

Oracle. (2011). Java Platform, Standard Edition 6, API Specification. Retrieved Jul 09, 2013, from
http:/ /docs.oracle.com: http:/ /docs.oracle.com/javase/6/docs/api/overview-
summary.html

Oracle. (2012). The Java Tutorials. Retrieved Jun 14, 2012, from http://docs.oracle.com/:
http:/ /docs.oracle.com/javase/tutorial /

Schreckmann, D. (2003, Mar 31). An Introduction to java.util.regex, Part 2: More Pattern Elements.
Retrieved Jul 10, 2013, from Java Ranch:
http:/ /www javaranch.com/journal /2003 /04 /RegexTutorial. htm

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 35 of 36

http://www.softmake.com.au/

JavaReference-Language-RegularExpressions.docx CCBY-NC-SA 4.0

Document Licence

Java Reference - Language - Regular Expressions © 2021 by John Bentley is licensed under
Attribution-NonCommercial-ShareAlike 4.0 International

DO

SaveDate: 2021-07-07 01:12 John Bentley of www.softmake.com.au Page 36 of 36

http://www.softmake.com.au/
https://www.softmake.com.au/technical-skills-files/JavaReference-Language-RegularExpressions.pdf
https://www.softmake.com.au/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

	Table Of Contents
	Selected Examples
	Matches
	Replacement

	Conceptual Overview
	Java Coding Operations
	Overview
	Paradigmatic Example
	Common Single Line Methods
	Match – Boolean Test
	Match – Substring Extraction
	Replacement
	Split

	Other Matcher Class Methods

	Regex Syntax
	Pattern ("regex") Syntax
	Single Characters
	Character sets
	Logical Operations
	Quantifiers
	Boundary Matches
	Flags
	Quotation
	Captures

	Replacement Syntax

	Regex Rules
	General
	Quantifiers
	Boundary Matchers
	Flags
	Quotation
	Captures
	General
	Look ahead and Look behind non-captures
	Atomicity (*dodgy section)
	Backreferences

	Replacement
	Unicode Support

	References, Word
	Document Licence

